Gelfand-Fuchs cohomology of invariant formal vector fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ju l 2 00 6 GELFAND - FUCHS COHOMOLOGY OF INVARIANT FORMAL VECTOR FIELDS

Let Γ be a finite group acting linearly on a vector space V . We compute the Lie algebra cohomology of the Lie algebra of Γ-invariant formal vector fields on V . We use this computation to define characteristic classes for foliations on orbifolds.

متن کامل

Gelfand-Fuchs cohomology and M-Theory as a Topological Quantum Field Theory

We propose a Lagrangian density for M-Theory which is purely topological using Gelfand-Fuchs cohomology which characterises up to homotopy Γq-structures and hence foliations in particular. Then, using a physical principle and S-duality, we conjecture on the existence of certain plane fields on S. PACS classification: 11.10.-z; 11.15.-q; 11.30.-Ly

متن کامل

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

On the Leibniz cohomology of vector fields

I. M. Gelfand and D. B. Fuks have studied the cohomology of the Lie algebra of vector fields on a manifold. In this article, we generalize their main tools to compute the Leibniz cohomology, by extending the two spectral sequences associated to the diagonal and the order filtration. In particular, we determine some new generators for the diagonal Leibniz cohomology of the Lie algebra of vector ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2008

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2008.v15.n1.a12